Goals
Each storage technology has technical and economic characteristics that are ideally suited for a specific application. These characteristics include, for example, energy and power density, reaction time, environmental sustainability, and safety. Redox flow and salt batteries have a large storage capacity but can only be charged and discharged slowly. A supercapacitor, on the other hand, has fast charging times but cannot store large energy quantities over a long period of time. Only the efficient combination of both functionalities provides the necessary performance and flexibility in use.
“Modern energy storage systems need to guarantee security of supply, performance and safety, have flexible management software and be manufactured and operated in the most sustainable and environmentally friendly way possible”, explains SMHYLES coordinator Edoardo G. Macchi, Head of Battery and Electrification Technologies Unit at the Fondazione Bruno Kessler in Trento, Italy.
Combining sustainable batteries with other storage systems
The central goal of the SMHYLES project is to develop and demonstrate such innovative, safe, and sustainable hybrid energy storage systems on an industrial scale. In SMHYLES, a water-based supercapacitor and either a redox flow battery or a salt battery are to be combined to create innovative hybrid energy storage systems.
The novel hybrid storage systems developed in SMHYLES should be able to store energy over a medium to long period of time and release it very quickly. At the same time, they will reduce the use of critical raw materials, be safe to use (as they are not easily flammable), cost-effective and recyclable. Compared to conventional solutions, these new storage systems are expected to have a 40 per cent lower carbon footprint, also thanks to novel recycling solutions, and a 20 per cent higher reliability and availability, which should make our renewables-based power grids more resilient.